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1. Introduction

Roughly speaking, the stable homotopy category of algebraic topology is
obtained from the homotopy category of topological spaces by inverting
the suspension functor, yielding a ‘linear’ approximation to the homotopy
category of spaces. The isomorphism classes of objects in the stable ho-
motopy category represent the generalized cohomology theories, defined
by the Eilenberg-Steenrod axioms [ES45] without the dimension axiom
(which distinguishes ‘ordinary’ from ‘generalized’ cohomology theories).

The first construction of the full stable homotopy category was given by
Boardman [B69]. Nowadays, many models for the stable homotopy category
are known, most of which have the additional structure ofosed model
categoryin the sense of Quillen [Q67]. In [M83], H. R. Margolis introduced
a short list of axioms and conjectured that they characterize the stable ho-
motopy category up to an equivalence of categories. In Theorem 3.2 we
prove that these axioms do uniquely specify the stable homotopy category
whenever there is some underlying Quillen model category.

We also prove a more structured version, the Uniqueness Theorem below,
which states that the model category of spectra itself is uniquely determined
by certain equivalent conditions, up to so cal@dillen equivalenceof
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model categories (a particular adjoint pair of functors which induces equiv-
alences of homotopy categories, see Definition 2.5). This is of interest due
to the recent plethora of new model categories of spectra [HSS,MMSS,
EKMM, L99,Lyd]. The Uniqueness Theorem provides criteria on the ho-
motopy category level for deciding whether a model category captures the
stable homotopy theory of spectra; the search for such intrinsic characteri-
zations was another main motivation for this project.

A model category istableif the suspension functor is invertible up to
homotopy. For stable model categories the homotopy category is naturally
triangulated and comes with an action by the graded #ihgf stable ho-
motopy groups of spheres, see 2.4. The Uniqueness Theorem shows that
this 72-triangulation determines the stable homotopy theory up to Quillen
equivalence.

Uniqueness TheoremLetC be a stable model category. Then the following
four conditions are equivalent:

(1) There is a chain of Quillen equivalences betwéeamd the model cat-
egory of spectra.

(2) There exists a$-linear equivalence between the homotopy category of
C and the homotopy category of spectra.

(3) The homotopy category 6fhas a small weak generatof for which
(X, X]fo(c) is freely generated as @&;-module by the identity map of
X.

(4) The model categor§ has a cofibrant-fibrant small weak generat&r
for which the unit maf — Hom(X, X) is a m.-isomorphism of
spectra.

Moreover, if the conditions of the uniqueness theorem hold, then there
is in fact a single Quillen equivalence, rather than a chain, fréro the
model category of spectra.

The results of the main theorem have recently been improved by the first
author. In [Sch3] it is shown that 2-locally the triangulated stable homotopy
category alone determines the Quillen equivalence type of the model cate-
gory of spectra. In other words, even thgaction is 2-locally determined
by the triangulated structure. The odd primary situation is subject to work
in progress.

The Uniqueness Theorem is proved in a slightly more general form as
Theorem 5.3. Our reference model for the category of spectra is that of
Bousfield and Friedlander [BF78, Def. 2.1]; this is probably the simplest
model category of spectra and we review it in Sect. 4. The key technical
property of this category of spectra s that it is thee stable model category
on one generatofthe sphere spectrum), see Theorem 5.1 for the precise
statement. In Sect. 4 we also discussBical model structure for spectra
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for a subringR of the ring of rational numbers, see Lemma 4.1. The notions
of ‘smallness’ and ‘weak generator’ are recalled in 3.1. The unit map is
defined in 5.2.

Our work here grows out of recent developments in axiomatic stable
homotopy theory. Margolis’ axiomatic approach was generalized in [HPS]
to study categories which share the main formal properties of the stable
homotopy category, namely triangulated symmetric monoidal categories
with a weak generator or a set of weak generatomsey [Ho99, Ch. 7]
then studied properties of model categories whose homotopy categories
satisfied these axioms. Heller has given an axiomatization of the concept of
a “homotopy theory” [He88], and then characterized the passage to spectra
by a universal property in his context, see [He97, Sec. 8-10]. The reader
may want to compare this with the universal property ofrttaalel category
of spectra, Theorem 5.1 below.

Another source of motivation for this paper came from ‘Morita theory
for derived categories’, also known as ‘tilting theory’. In [Ri89], Rickard
answered the question of when two rings are derived equivalent, i.e., when
various derived module categories are equivalent as triangulated categories.
Basically, a derived equivalence exists if and only if a so-called tilting com-
plex exists, which is a special small weak generator for the derived cate-
gory. Later Keller [K94] gave an elegant reformulation and generalization of
Rickard's results on derived equivalences for rings using differential graded
categories. These are the first results where certain triangulated categories
are characterized by the existence of a weak generator with specific proper-
ties.

In [SS] we classify stable model categories with a small weak genera-
tor as modules over a ring spectrum, see Remark 5.4. Part of our Unique-
ness Theorem here can be seen as a special case of this classification. Note
that here, as in [SS], we ignore the smash product in the stable homotopy
category; several comparisons and classification results respecting smash
products can be found in [Sch2, MMSS, Sh].

2. Stable model categories

Recall from [Q67, 1.2] or [H099, 6.1.1] that the homotopy category of a
pointed model category supports a suspension fudcteith a right adjoint
loop functors?.

Definition 2.1. A stable model categoiig a pointed, complete and cocom-
plete category with a model category structure for which the functaad
X on the homotopy category are inverse equivalences.

The homotopy category of a stable model category has a large amount
of extra structure, some of which will play a role in this paper. First of
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all, it is naturally a triangulated category (cf. [V97]). A complete reference
for this fact can be found in [H099, 7.1.6]; we sketch the constructions:
by definition the suspension functor is a self-equivalence of the homotopy
category and it defines the shift functor. Since every object is a two-fold
suspension, hence an abelian co-group object, the homotopy category of a
stable model category is additive. Furthermore, by [H099, 7.1.11] the cofiber
sequences and fiber sequences of [Q67, 1.3] coincide up to sign in the stable
case, and they define the distinguished triangles. Since we required a stable
model category to have all limits and colimits, its homotopy category will
have infinite sums and products.

Apart from being triangulated, the homotopy category of a stable model
category has a natural action of the rinfj of stable homotopy groups of
spheres. Since this action is central to this paper, we formalize and discuss
it in some detail. We define aR,-triangulated category for a graded com-
mutative ringR., the main case of interest beify = =2, the ring of stable
homotopy groups of spheres.

Definition 2.2. Let R, be a non-negatively graded ring, which is commuta-
tive in the graded sense, i.ef = (—1)""Bafora € R, andg € R,,. An
R,-triangulated categoris a triangulated categoff with bilinear pairings

R, ® T(X,)Y) — T(X[n,Y), a®fr—a-f

for all X andY in 7 and alln > 0, whereX|[n] is then-fold shift of X.
Furthermore the pairing must satisfy the following conditions.

(i) The pairing is unital and associative, i.e. for X — Y anda, § €
R, we have

1-f=f and (af)-f = a-(B-Ff).

(i) The pairing is central in the sense that

(a-g)ofln] = a-(gof) = go(a-f)
foraeR,, f: X —Yandg: Y — Z.
(ii) For « € R, andf : X — Y we have

(a-HA] = (=1)" - f[1].
An R.-exact functorbetweenR.-triangulated categories is a functor:
T — T together with a natural isomorphism: L(X)[1] = L(X[1])
such that

— (L, 7) forms an exact functor of triangulated categories, i.e., for every
distinguished triangleX — Y — Z — X]1] in 7 the sequence
L(X) — L(Y) — L(Z) — L(X)[1] is a distinguished triangle
in 7, where the third map is the composit§”Z) — L(X[1]) it
L(X)[1];
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— (L, 7) is Ry-linear, i.e., for allX andY in 7 andn > 0 the following
diagram commutes

R, ®T(X,)Y)

- T(X[n],Y)

Id® L L

Ry @ T(L(X), L(Y)) —— T(L(X)[n], L(Y))

K oT

T(L(X[n]), L(Y))

wherer : L(X)[n] — L(X|n]) is then-fold iterate of instances of the
isomorphismr andy denotes the action @k, i.e.,u(a® f) = a- f.

An R,-linear equivalencebetweenR,-triangulated categories is aR,-
exact functor which is an equivalence of categories and whose inverse is
also exact (i.e., also preserves distinguished triangles).

Remark 2.3.A few comments about gradings, sign conventions and about
R.-module structures in aRl,-triangulated category are in order. The com-
patibility condition (iii) of Definition 2.2 can be motivated by the following
observation: the magyx - f)[1] has source objecX [n][1], whereasy - f[1]
has source objecX[1][n]. These are both equal t&[n + 1], but behind
the scenes one suspension coordinate is permuted pésér coordinates,
which introduces the sigf—1)". This coordinate permutation shows up
explicitely when we prove property (iii) for the’-action on the homotopy
category of a stable model category in 2.4.

For objectsX andY of atriangulated categoff we denote by (X, Y).
the graded abelian homomorphism group defined BYX,Y),,
= T(X[m],Y) for m € Z, whereX[m] is the m-fold shift of X. For
three objectsX, Y and Z we extend composition to a pairing of graded
abelian groups

0T, Z)m @T(X,Y),——T (X, Z)pnsm, [fRg+—— foglm].

Then the graded abelian group(X, X). becomes a graded ring, and
T(X,Y). becomes a gradefl(Y,Y).-7 (X, X).-bimodule.
InanR,-triangulated category, conditions (i) and (ii) yield the relation

(a-ldx)o(f-ldx) = a-(6-1dx) = (af)-ldx ,

so that the action oR, on the identity of an objeck yields a homomor-
phism of graded ring®. — 7 (X, X).. Hence for every pair of objects,
the7 (Y,Y).-7 (X, X).-bimoduleT (X, Y"), becomes aik,-bimodule by
restriction of scalars. The original pairing Bf with 7 (X, Y").. specified by
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the R,-triangulation gives yet anothét,-module structure. The centrality
condition guarantees that these three actions coincide in the sense that

(a-ldy)of = a-f = fo(a-ldypm) = (=1)"" fo(a-ldx)

for every morphismy : X[m] — Y and everynx € R, (the last equality
uses condition (iii) of Definition 2.2). Specializing t6 = Y also shows
that the image oRR, is indeed central (in the graded sense) in the graded
endomorphism ring (X, X)..

Now we explain how the homotopy category of a stable model cate-
gory is naturally ar;-triangulated category. For definiteness werggt=
colimy, [S™+*, S¥], where the colimit is formed along right suspension

—Algi : [Sn+k,5k] N [Sn—i-k-‘rl’slc—kl} )
The ring structure is given by composition of representatives.

Construction 2.4. Using the technique dfamings Hovey[H099, 5.7.3]
constructs a pairing

AL Ho(C) x Ho(S,) —— Ho(C)

which makes the homotopy category of a pointed model categamio a
module (in the sense of [H099, 4.1.6]) over the symmetric monoidal homo-
topy category of pointed simplicial sets under smash product. In particular,
the pairing is associative and unital up to coherent natural isomorphism, and
smashing with the simplicial circl§! is naturally isomorphic to suspension

as defined by Quillen [Q67, 1.2]. fis stable, we may tak&[1] := X ALS!

as the shift functor of the triangulated structure. We define the action

@ X, YO 5 [X[n],Y]H©)

as follows. Supposer : S"** — S* is a morphism in the homotopy
category of pointed simplicial sets which represents an elemenf of
colimy, [S"**, S¥] andf : X — Y is a morphism in the homotopy cate-
gory of C. SinceC is stable, smashing wit§* is a bijection of morphism
groups in the homotopy category. So we can definef to be the unique
morphism in[X AL §7 Y]Ho(©) such thata - f) AL 1ge = f AL ainthe
group[X AL Stk y AL §kH(C) Here and in the following we identify the
n-fold shift X[n] = (--- (X ALSY) AL S .. )AL ST with X AL S™ under
the associativity isomorphism which is constructed in the proof of [H099,
5.5.3] (or rather its pointed analog [H099, 5.7.3]); this way we regaias
an element of the groygX [n], Y']"°(©). Observe that even though simplicial
sets act from theight on the homotopy category 6f = acts from thdeft.
By constructiorn- f = (awAlg1)- f, sothe morphism - f only depends
on the class ofv in the stable homotopy grouts. Ther$-action is unital;
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associativity can be seen as follows:dfc [S™+7+k gn+k] represents
another stable homotopy element, then we have

(B-f)AFa= 1y Aba)o (B f) AF Lgnir) = (Iy AMa) o (f AV B)
=fAF(aof) = ((aof) f)AFlg

in the group X AL §mtntk 'y AL §kHO(C)  According to the definition of
a- (8- f)thismeansthat - (5 - f) = (a0 3) - f. Centrality of the action
is proved in a similar way.

For the verification of condition (iii) of Definition 2.2 we note that

fAFa=fAL(1g Aa) = (=D fFAE (an1g)
= ()" (fAF ) AP g = (=) (a- f) AT Lgin
= (=)™ (a- H]) A" 1gk .

The second equality uses that the left and right suspensions of an element of
T 1 S* differ by the sign(—1)". The equation shows that-1)" (a - f)[1]
has the property which defines- f[1], hence condition (jii) holds.

Definition 2.5. A pair of adjoint functors between model categories is a
Quillen adjoint pairif the right adjoint preserves fibrations and trivial fibra-
tions. An equivalent condition is that the left adjoint preserves cofibrations
and trivial cofibrations. A Quillen adjoint pair induces an adjoint pair of
functors between the homotopy categories [Q67, |.4 Thm. 3}tatzd de-
rived functors A Quillen functor pair is &uillen equivalencdf the total
derived functors are adjoint equivalences of the homotopy categories.

The definition of Quillen equivalences just given is not the most common
one; however it is equivalent to the usual definition by [H099, 1.3.13]. Sup-
posel’ : C — Disthe leftadjoint of a Quillen adjoint pair between pointed
model categories. Then the total left derived funcidr : Ho(C) —
Ho(D) of F' comes with a natural isomorphism: LF(X) Al ST —;
LF(X nF S') with respect to which it preserves cofibration sequences, see
[Q67, 1.4 Prop. 2] or [H099, 6.4.1]. & andD are stable, this makdst' into
an exact functor with respect to It should not be surprising thal F, )
is alsor:-linear in the sense of Definition 2.2, but showing this requires a
careful review of the definitions which we carry out in Lemma 6.1.

Remark 2.6.In Theorem 5.3 below we show that thgtriangulated homo-

topy category determines the Quillen equivalence type of the model category
of spectra. Thisis not true for general stable model categories. As an example
we consider the-th Moravak -theory spectrunk’(n) for n > 0 and some

fixed primep. This spectrum admits the structure of 4g,-ring spectrum
[R089], and so its module spectra form a stable model category. The coeffi-
cientringK (n). = Fp[vn, vy, '], with v,, of degreep™ —2, is a graded field,

n
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and so the homotopy category®{n)-modules is equivalent, via the homo-
topy group functor, to the category of grad&dn).-modules. Similarly the
derived category of differential gradédi(n).-modules is equivalent, via the
homology functor, to the category of grad&dn).-modules. This derived
category comes from a stable model category structure on differential graded
K (n).-modules with weak equivalences the quasi-isomorphisms. The pos-
itive dimensional elements af’ act trivially on the homotopy categories in
both cases. So the homotopy categories of the model categori€&0f
modules and differential gradéd(n).-modules arer:-linearly equivalent.
However, the two model categories are not Quillen equivalent; if they were
Quillen equivalent, then the homotopy types of the function spaces would
agree [DK80, Prop. 5.4]. But all function spaces of DG-modules are products
of Eilenberg-Mac Lane spaces, and this is not trueif¢n )-modules.

3. Margolis’ uniqueness conjecture

H. R. Margolis in ‘Spectra and the Steenrod algebra’ introduced a set of
axioms for a stable homotopy category [M83, Ch. 2 Sect. 1]. The stable
homotopy category of spectra satisfies the axioms, and Margolis conjectures
[M83, Ch. 2, Sect. 1] that this is the only model, i.e., that any category which
satisfies the axioms is equivalent to the stable homotopy category. As part of
the structure Margolis requires the subcategory of small objects of a stable
homotopy category to be equivalent to the Spanier-Whitehead category of
finite CW-complexes. So his uniqueness question really concerns possible
‘completions’ of the category of finite spectra to a triangulated category
with infinite coproducts. Margolis shows [M83, Ch. 5 Thm. 19] that modulo
phantom maps each model of his axioms is equivalent to the standard model.
Moreover, in [CS98], Christensen and Strickland show that in any model
the ideal of phantoms is equivalent to the phantoms in the standard model.

Definition 3.1. An objectG of a triangulated categoty is called aweak
generatorif it detects isomorphisms, i.e., amgp X — Y is an isomor-
phism if and only if it induces an isomorphism between the graded abelian
homomorphism groups (G, X ). and7 (G,Y ).. An objectG of T is small

if for any family of objects{ A;};c; whose coproduct exists the canonical
map

P 7 A) — TG ][] A)
iel icl
is an isomorphism.
A stable homotopy categoiyn the sense of [M83, Ch. 2 Sect. 1] is
a triangulated category endowed with a symmetric monoidal, bi-exact
smash product such that:
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— S has infinite coproducts,

— the unit of the smash product is a small weak generator, and

— there exists an exact and strong symmetric monoidal equivalBnce
SW; — Ssmal petween the Spanier-Whitehead category of finite CW-
complexes and the full subcategory of small objectS.in

The condition thaR is strong monoidal means that there are coherently
unital, associative, and commutative isomorphisms betw#ehA B) and
R(A) A R(B) and betweer?(S?) and the unit of the smash productSn
Hence a stable homotopy categ&pecomes ari-triangulated category
as follows. The elements of® are precisely the maps fros® to S in
the Spanier-Whitehead category. So givere =5 = SW(s", SY) and
f: X — YinSwecanformf AR(a): X AR(S™) — Y AR(S?). Via
the isomorphism& A R(S™) = X [n]AR(SY) = X [n]andY AR(S?) =Y
we obtain an element if(X[n], Y') which we define to bex - f. This -
action is unital, associative and bilinear because of the coherence conditions
on the functorR.

As a consequence of our main theorem we can prove a special case
of Margolis’ conjecture, namely we can show that a category satisfying
his axioms is equivalent to the homotopy category of spectra if isbate
underlying model category structure. Note that wendtask for any kind of
internal smash product on the model category which occurs in the following
theorem.

Theorem 3.2. Suppose tha$ is a stable homotopy category in the sense
of [M83, Ch. 2 Sect. 1] which supports7g-linear equivalence with the
homotopy category of some stable model category. Bherequivalent to
the stable homotopy category of spectra.

Proof. Let C be a stable model category which admitsZalinear equiva-
lence® : S — Ho(C). The imageX € Ho(C) under® of the unit object

of the smash product is a small weak generator for the homotopy category
of C. Because the equivalendeis 7¢-linear, X satisfies condition (3) of

our main theorem, and gbis Quillen equivalent to the model category of
spectra. Thus the homotopy categorg@nd the category aren:-linearly
equivalent to the ordinary stable homotopy category of spectra. 0O

The stability assumption on the model category in Theorem 3.2 is some-
what redundant. Indeedd¥is a model category whose homotopy category
is equivalent to a stable homotopy category in the sense of Margolis, via a
functor which preserves the suspension, iienautomatically stable. The
added stability assumption makes the statement simpler, since this avoids
any discussion ofr,-linearity’ in an unstable context.
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4. The R-local model structure for spectra

In this section we review the stable model category structure for spectra
defined by Bousfield and Friedlander [BF78, Sect. 2] and establisRthe
local model structure (Lemma 4.1).

A spectrumconsists of a sequendeX, },,>o of pointed simplicial sets
together with maps,, : S* A X,, — X, 1. Amorphismf : X — Y of
spectra consists of maps of pointed simplicial g&ts X,, — Y, for all
n > 0 such thatf,, ;1 o 0, = 0, 0 (151 A f,,). We denote the category of
spectra bySp. A spectrumX is anf2-spectrunif for all n the simplicial set
X, is a Kan complex and the adjoint, — 2X,,,1 of the structure map
o, IS a weak homotopy equivalence. Téghere spectrurfi is defined by
S, = S™ = (S1)"", with structure maps the identity maps. The homotopy
groups of a spectrum are defined by

T X = colim;m; .| X;|

A morphism of spectra is stable equivalencéit induces an isomorphism
of homotopy groups. Ama — Y of spectra is &ofibrationif the map
Xo — Yy and the maps

XnUginx, | S'AYnog —— Y,

for n > 1 are cofibrations (i.e., injections) of simplicial sets. A map of
spectra is atable fibrationf it has the right lifting property (see [Q67, | p.
5.1],[DS95, 3.12] or [H099, 1.1.2]) for the maps which are both cofibrations
and stable equivalences.

Bousfield and Friedlander show in [BF78, Thm. 2.3] that the stable equiv-
alences, cofibrations and stable fibrations form a model category structure
for spectra. A variation of their model category structure igtHecal model
structure forR a subring of the ring of rational numbers. TRedocal model
category structure is well known, but we were unable to find a reference in
the literature. A map of spectra is &hequivalencef it induces an isomor-
phism of homotopy groups after tensoring withand is anR-fibration if
it has the right lifting property with respect to all maps that are cofibrations
and R-equivalences.

Lemma 4.1. Let R be a subring of the ring of rational numbers. Then the
cofibrations,R-fibrations andR-equivalences make the category of spectra
into a model category, referred to as tiielocal model category structure

A spectrum is fibrant in th&-local model structure if and only if it is an
2-spectrum withR-local homotopy groups.

We use ‘RLP’ to abbreviate ‘right lifting property’. For one of the fac-
torization axioms we need the small object argument (see [Q67, Il 3.4 Re-
mark] or [DS95, 7.12]) relative to a set = JV U J'U Jgr of maps of
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spectra which we now define. We denotedli], 0 A[i] and A*[i] respec-
tively the simpliciali-simplex, its boundary and i#sth horn (the union of
all (« — 1)-dimensional faces except theth one). A subscript+’ denotes
a disjoint basepoint. We denote By K the spectrum freely generated by a
simplicial setK in dimensiom, i.e.,(F,K); = S7~" A K (whereS™ = x
for m < 0). HenceF,, K is a shift desuspension of the suspension spectrum
of K.

First, JV is the set of maps of the form

fori,n > 0 and0 < k < 4. To define the set of map#™" we start with

the map\,, ;: F,+;57 — F,S%which is the identity in spectrum levels
aboven + j. The map\,, ; is a stable equivalence, but not a cofibration, so
we use the reduced mapping cylinder to replace it by a cofibration. More
precisely, we let

Cn,j: Fn+ij — Cyl()\w) = (Fn+ij A A[1]+) UFn+ij><l FnSO

be the ‘front’ inclusion into the mapping cylinder, a cofibration of spectra.
The set/*'then consists of the smash products (also called ‘pushout product
maps’)

Cyl(An,j) N OA[i] 4 U, sinaAfi), Foy S A Alily
— Cyl(Anj) A Afi]+

of the mapping cylinder inclusios, ; with the boundary inclusionsA[:]
— Ali]4 for all 4, j,n > 0. It is shown in [Schl, Lemma A.3] that the
stable fibrations of spectra are precisely the maps with the RLP with respect
to the set/V U J*=.

For every natural numbérwe choose a finite pointed simplicial Sefy,
which has the weak homotopy type of the motoore space of dimension
two. We letJy be the set of maps

F, X" My — F,5™C/(M,)

for all m,n > 0 and all natural numberswhich are invertible ink, where
C(M},) denotes the cone of the Moore space.
Now we prove a sequence of claims:

(@) AmapX — * has the RLP for the set = JV U JtU Jy if and only
if X is an{2-spectrum withR-local homotopy groups.

(b) A map which is ank-equivalence and has the RLP fdris also an
acyclic fibration in the stable model structure.

(c) Every map can be factored as a compgsité wherep has the RLP for
J andji is a cofibration and aR-equivalence and is built from maps in
J by coproducts, pushouts and composition.
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(d) A map is anR-fibration if and only if it has the RLP foy.

(@) The RLP for(JV U J%) means thatX is stably fibrant, i.e., an
(2-spectrum. Forf2-spectra the lifting property with respect to the map
F, XY™ M, — F,X™C(M}) means precisely that every element in the
mod- homotopy group

[FnEkavX}HO(Sp) = 7o Qmmap(MkaXn) = 7Tm+2fn(X§Z/k)

is trivial. Since this holds for altn, n > 0 and allk which are invertible in
R, the mapX — x has the RLP fot/ if and only if X is an{2-spectrum
with R-local homotopy groups.

(b) Supposef : X — Y is an R-equivalence and has the RLP fdr
Thenf isin particular a stable fibration and we denote its fibeFby here
exists a long exact sequence connecting the homotopy groups.fand
Y. Sincef is an R-equivalence, the localized homotopy grops . F’
of the fiber are trivial. As the base change of the nfathe mapF — x
also has the RLP faof. By (a), F' is an{2-spectrum whose homotopy groups
are R-local. Hence the homotopy groups of the filferare trivial, so the
original mapf is also a stable equivalence.

(c) Every object occurring as the source of a map' iis a suspension
spectrum of a finite simplicial set, hence sequentially small in the sense of
[Q67, 11 3.4 Remark] or [DS95, Def. 7.14]. Thus Quillesimall object argu-
ment(see [Q67, Il 3.4 Remark] or [DS95, 7.12]) provides a factorization of a
given map as a composite : wherei is built from maps in/ by coproducts,
pushouts and composition, and wheiteas the RLP for. Since every map
in J is a cofibration, so i$. Cofibrations of spectra give rise to long exact
sequences of homotopy groups, and homotopy groups of spectra commute
with filtered colimits of cofibrations. So to see thias an R-equivalence it
suffices to check that the mapsirare R-equivalences. The maps.itf are
levelwise equivalences, the mapsiifi are stable equivalences, hence both
are R-equivalences. Since the stable homotopy groups of the Moore space
M, arek-power torsion, the maps iz are alsaR-equivalences.

(d) We need to show that a map has the RLP.fof and only if it has
the RLP for the (strictly bigger) class of mapsvhich are cofibrations and
R-equivalences. This follows if any sughs a retract of a map built from
maps inJ by coproducts, pushouts and composition. We fagterp o i as
in (c). Sincej andi are R-equivalences, so js Sincep also has the RLP for
J, itis a stable acyclic fibration by (b). Sohas the RLP for the cofibration
j, hencej is indeed a retract of

Proof of Lemma 4.1.We verify the model category axioms as given in
[DS95, Def. 3.3]. The category of spectra has all limits and colimits (MC1),
the R-equivalences satisfy the 2-out-of-3 property (MC2) and the classes
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of cofibrations,R-fibrations andR-equivalences are each closed under re-
tracts (MC3). By definition thez-fibrations have the RLP for maps which
are both cofibrations an®-equivalences. Furthermore a map which is an
R-equivalence and aR-fibration is an acyclic fibration in the stable model
structure by claim (b) above, so it has the RLP for cofibrations. This proves
the lifting properties (MC4). The stable model structure provides factoriza-
tions of maps as cofibrations followed by stable acyclic fibrations. Stable
acyclicfibrations are in particuld-equivalences ang-fibrations, so thisis
also a factorization as a cofibration followed by an acyclic fibration ifthe
local model structure. The claims (c) and (d) provide the other factorization
axiom (MC5).

Lemma 4.2. LetC be a stable model categowy,: C — Sp a functor with

aleftadjoint andrR a subring of the rational numbers. Théhand its adjoint

form a Quillen adjoint pair with respect to thB-local model structure if
and only if the following three conditions hold:

() G takes acyclic fibrations to level acyclic fibrations of spectra,

(i) G takes fibrant objects t@2-spectra withR-local homotopy groups
and

(iii) G takes fibrations between fibrant objects to level fibrations.

Proof. The ‘only if’ part holds since the level acyclic fibrations afe
local acyclic fibrations, th&-fibrant objects are th-spectra withR-local
homotopy groups (claim (a) above), aRefibrations are in particular level
fibrations. For the converse suppose thasatisfies conditions (i) to (iii).
We use a criterion of Dugger [Du, A.2]: in order to show tldatand its
adjoint form a Quillen adjoint pair it suffices to show th@tpreserves
acyclic fibrations and it preserves fibrations between fibrant objects. The
R-local acyclic fibrations are precisely the level acyclic fibrations(Gso
preserves acyclic fibrations by assumption (i). We claim that every level
fibration f : X — Y betweenf2-spectra withR-local homotopy groups
is an R-fibration. Given this(z preserves fibrations between fibrant objects
by assumptions (ii) and (iii).

To prove the claim we choose a factorizatipe- poiwithi: X — Z
a cofibration andz-equivalence and with : Z — Y an R-fibration. Since
Y is R-fibrant, so isZ. Hencei is anR-equivalence betweef-spectra with
R-local homotopy groups, thus a level equivalence. Henisean acyclic
cofibration in the strict model (or level) model structure for spectra of [BF78,
2.2], so that the level fibratiofi has the RLP foi. Hencef is a retract of
the R-fibrationp, and so it is itself amR-fibration.
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5. A universal property of the model category of spectra

In this section we formulate a universal property which roughly says that
the category of spectra is the ‘free stable model category on one object’. The
following theorem associates to each cofibrant and fibrant ojexfta sta-

ble model categorg a Quillen adjoint functor pair such that the left adjoint
takes the sphere spectrumXa Moreover, this Quillen pair is essentially
uniguely determined by the objeat. Theorem 5.3 gives conditions under
which the adjoint pair forms a Quillen equivalence. We prove Theorem 5.1
in the final section 6.

Theorem 5.1. (Universal property of spectra)Let C be a stable model
category andX a cofibrant and fibrant object af.

(1) There exists a Quillen adjoint functor pak A — : Sp — C and
Hom(X,—) : C — Sp such that the left adjoinf A — takes the
sphere spectrung, to X.

(2) If Ris a subring of the rational numbers and the endomorphism group
[X, X]H(C) js an R-module, then any adjoint functor pair satisfyitig
is also a Quillen pair with respect to the-local stable model structure
for spectra.

(3) If C is a simplicial model category, then the adjoint functaks A —
and Hom(X, —) of (1) can be chosen as simplicial Quillen adjoint
functor pair.

(4) Any two Quillen functor pairs satisfyin@) are related by a chain of
natural transformations which are weak equivalences on cofibrant or
fibrant objects respectively.

Now we define the unit map and deduce fRdocal form of our main
unigueness theorem.

Definition 5.2. Let X be a cofibrant and fibrant object of a stable model cat-
egoryC. Choose a Quillen adjoint pak A — : Sp — C andHom(X, —) :

C — Spasin part (1) of Theorem 5.1. Thamit mapof X is the map of
spectra

S —— Hom(X, X)

which is adjoint to the isomorphist¥ A S = X. By the uniqueness part
(4) of Theorem 5.1, the spectrufom (X, X) is independent of the choice
of Quillen pair up to stable equivalence of spectra urider

Theorem 5.3. Let R be a subring of the ring of rational numbers andddie
a stable model category. Then the following four conditions are equivalent:

(1) There is a chain of Quillen equivalences betw€eand the R-local
stable model category of spectra.
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(2) There exists a:-linear equivalence between the homotopy category of
C and the homotopy category &flocal spectra.

(3) The homotopy category 6fhas a small weak generatdf for which
[X, X]EO(C) is freely generated as aR ® 7$-module by the identity map
of X.

(4) The model categor¢ has a cofibrant-fibrant small weak generator
X for which the groupsX, X]Ifo(c) are R-modules and the unit map
S — Hom(X, X) induces an isomorphism of homotopy groups after
tensoring withR.

Furthermore, if X is a cofibrant and fibrant object af which satisfies
conditions(3) or (4), then the functorélom (X, —) and X A — of Theorem
5.1(1)form a Quillen equivalence betwe€and theR-local model category
of spectra.

Remark 5.4.In [SS] we associate to every object of a stable model cat-
egory anendomorphism ring spectrurithe spectruntom (X, X) given

by Theorem 5.1 (1) is stably equivalent to the underlying spectrum of the
endomorphism ring spectrum. Moreover, the unit map as defined in 5.2
corresponds to the unit map of ring spectra. So condition (4) of the above
theorem means that the endomorphism ring spectruinisfstably equiva-

lent, as a ring spectrum, to tii&local sphere ring spectrum. This expresses
the equivalence of conditions (1) and (4) as a corollary of the more general
classification result of [SS] for stable model categories with a small weak
generator. The special case in this paper, however, has a more direct proof.

Proof of Theorem 5.3Every Quillen equivalence between stable model cat-
egories induces an exact equivalence of triangulated homotopy categories.
The derived functor of a left Quillen functor is als¢-linear by Lemma 6.1,
so condition (1) implies (2). Now assume (2) and}ebe a cofibrant and
fibrant object oflo(C) which in the homotopy category is isomorphic to the
image of the localized sphere spectrum under sefrknear equivalence.
With this choice, condition (3) holds.

Given condition (3), we may assume thatis cofibrant and fibrant and
we choose a Quillen adjoint pak A — andHom (X, —) as in part (1) of
Theorem 5.1. Since the grodi, X]1°(©) is an R-module, the functors
form a Quillen pair with respect to the-local model structure for spectra
by Theorem 5.1 (2). By Lemma 6.1 the map

X AL — ¢S, sere)  x, x]Hel©

induced by the left derived functdé A — and the identificatiok AL'S =
X is me-linear (note that the groups on the left hand side are taken in
the R-local homotopy category, so thi[n], S|°(SPr) is isomorphic to
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R ® 7). Source and target of this map are frBex 7f-modules, and

the generator kgis taken to the generator 4d Hence the mapX A”

— is an isomorphism. For a fixed integer the derived adjunction and
the identificationX[n] = X A S[n] provide an isomorphism between
[X [n], X]H°©) and[S[n], RHom (X, X)]"°(5Pr) under whichX AL — cor-
responds tdS[n], S|H°SrPr) s [S[n], RHom (X, X)]H(5Pr) given by
composition with the unit map. For every spectrush the group
[S[n], AJH°(SPr) is naturally isomorphic taR ® 7, A, so this shows that
the unit map induces an isomorphism of homotopy groups after tensoring
with R, and condition (4) holds.

To conclude the proof we assume condition (4) and show that the Quillen
functor pairHom(X, —) andX A — of Theorem 5.1 (1) is a Quillen equiv-
alence. Since the groug, X]1°() is an R-module, the functors form a
Quillen pair with respect to thB-local model structure for spectra by Theo-
remb5.1(2). Sowe show thatthe adjoint total derived fundidfem (X, —):
Ho(C) — Ho(Spr) and X AL — : Ho(Spr) — Ho(C) are inverse
equivalences of homotopy categories. Note that the right derived functor
RHom(X, —) is taken with respect to th8-local model structure on spec-
tra.

For a fixed integen, the derived adjunction and the identificati&n
S[n] = X|[n] provide a natural isomorphism

(x) mRHom(X,Y) = [S[n], RHom(X, Y)]HO(SPR) ~ [X[TLLY]HO(C) _

So the functoRHom(X, —) reflects isomorphisms becau&eis a weak
generator. Hence it suffices to show that for every spectrumhe unit

of the adjunction of derived functord — RHom(X, X AL A) is an
isomorphism in the stable homotopy category. Basically, the target of this
natural transformation is an exact functor which commutes with infinite
coproducts, i.e., a homology functor. Since the natural transformation is an
isomorphism for the localized sphere, it is an isomorphism everywhere.

In more detail, consider the full subcateggnof the R-local stable ho-
motopy category with objects those spectda for which A —
RHom(X, X AT A) is anisomorphism. Condition (4) says that the unit map
S — Hom(X, X) is anR-local equivalence, s§ contains the (localized)
sphere spectrum. Since the composite fun&biom(X, X ALY —) com-
mutes with (de-)suspension and preserves distinguished triafigies, tri-
angulated subcategory of the homotopy category of spectra. As a left adjoint
the functorX AL — preserves coproducts. By formu(a) above and since
X is small, the natural map[; RHom(X, A;) — RHom(X,[]; 4;) is
am,.-isomorphism of spectra for any family of objects in Ho(C). Hence
the functorRHom (X, —) also preserves coproducts. $as a triangulated
subcategory of the homotopy category of spectra which is also closed under
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coproducts and contains the localized sphere spectrum. Thigghe whole
R-local stable homotopy category, and this finishes the proof. O

6. Construction of homomorphism spectra

In this last section we show that the derived functor of a left Quillen functor
is 2-linear, and we prove Theorem 5.1.

Lemma6.1l.Let FF : C — D be the left adjoint of a Quillen adjoint
pair between stable model categories. Then the total left derived functor
LF : Ho(C) — Ho(D) is7i-exact with respectto the naturalisomorphism
7: LF(X) AP ST — LF(X AL SY) of [H099, 5.6.2]

Proof. To simplify notation we abbreviate the derived funcfdr to L and
drop the superscript over the smash product on the homotopy category
level. By [H099, 5.7.3], the left derived functdr is compatible with the
action of the homotopy category of pointed simplicial setovéysumma-
rizes this compatibility under the name &f6(S.)-module functor’ [Ho99,
4.1.7]. The isomorphism : L(X) A S — L(X A S1) is the special case
K = S' of a natural isomorphism

xk ¢ LX) ANK —— L(X AK)

for a pointed simplicial sef{ which is constructed in the proof of [H099,
5.6.2] (or rather its pointed analog in [H099, 5.7.3]). It is important for us
that the isomorphismis associative (this is part of beinglad (S, )-module
functor’), i.e., that the composite

TA, KN M TANK,M

LIAANKAM LIANK)ANM L(ANKANM)
is equal tors xans (as before we suppress the implicit use of associativity
isomorphisms such A A K) A M = A A (K A M)). In particular the
map7x s» : L(X) AS™ — L(X A S™) is equal to then-fold iterate of
instances of_ 1.

Nowletf : X — Y be a morphism in the homotopy category’aind
leto : S*tF — S* represent a stable homotopy element. We have to show
thata - L(f) = L(a- f) o 7x,gn in the group L(X) A S™, L(Y)]Ho(P), By
the definition of« - L( f) this means proving

1) L(fyna = (L(a- f)oTx,sn) Algk

in the groud L(X) A S™**, L(Y') A S¥H(P). Sincery, g : L(Y)ASF —
L(Y A S*) is an isomorphism we may equivalently show equation (1) after
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composition withry- g». We note that

(@) 7ryge o (L(f) Na) = L(f AN ) o Tx gntx

3) = L((a- f) ANgr) o Txpgn gk © (Tx,5n A lgk)

(4) =Ty gk o (L(a- f) Algr)o(Tx,sn Algk)
=Ty, gk o (L(a- f)oTxsn) Algr),

which is what we had to show. Equations (2) and (4) use the naturality of
7. Equation (3) uses the defining property of the morphismf and the
associativity ofr. 0

Now we prove Theorem 5.1. We start with

Proof of Theorem 5.1 (2)By assumption the groug, X|1°(©) is a module
over a subring? of the ring of rational numbers. Sin€em (X, —) is aright
Quillen functor, it satisfies the conditions of Lemma 4.2ZoFor fibranty”,
the n-th homotopy group of thé&-spectrumHom (X, Y') is isomorphic to
the grougS[n], RHom(X, Y)]H°(SP), By the derived adjunction this group
isisomorphic to the groupX ALS[n], Y1) = [X[n], Y]H), whichis a
module over thek-local endomorphism ring¥, X]H°(€), Hence the homo-
topy groups of the&?2-spectruntiom(X, V') are R-local. ThusHom (X, —)
satisfies the conditions of Lemma 4.2 #rand it is a right Quillen functor
for the R-local model structure. O

Now we construct the adjoint functor p&liom(X, —) andX A — in the
case of asimplicial stable model category. This proves part (3) of Theorem
5.1 and also serves as a warm-up for the general construction which is very
similar in spirit, but involves more technicalities.

Construction 6.2. LetC be asimplicial stable model category arid a cofi-
brant and fibrant object @f. We choose cofibrant and fibrant modelsX

of the desuspensions &f as follows. We set’X = X and inductively
choose acyclic fibrationg,, : w"X — 2 (W™~ X) with w" X cofibrant.
We then define the functéfom(X, —) : C — Sp by setting

Hom(X,Y),, = map,(w"X,Y)

where map,’ denotes the simplicial mapping space. The spectrum structure
maps are adjoint to the map

mape(5,Y)
—_—

mape (w1 X,Y) mape(w"X A SLY)

=~ (mape(w"X,Y)

wherey,, is the adjoint ofp,,.
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The functorHom (X, —) has a left adjoinX’ A — : Sp — C defined as
the coequalizer

(5 Vo"XAS A4 == \[w"X A4, —— X AA.

The two maps in the coequalizer are induced by the structure maps of the
spectrumA and the map$,, : w"X A S! — w" 1 X respectively. The
various adjunctions provide bijections of morphism sets

C(X AS, W)= Sp(S,Hom (X, W)) = S,(S°, Hom(X, W)o) = C(X, W)

natural in theC-objectV. Hence the maX A S — X corresponding to
the identity of X in the casél’ = X is an isomorphism; this shows that the
left adjoint takes the sphere spectrumXo

Sincew™ X is cofibrant the functamap, (w" X, —) takes fibrations (resp.
acyclic fibrations) inC to fibrations (resp. acyclic fibrations) of simplicial
sets. So the functdidom(X, —) takes fibrations (resp. acyclic fibrations)
in C to level fibrations (resp. level acyclic fibrations) of spectra. Sthce
stable,y,, is a weak equivalence between cofibrant objects, so for fibrant
Y the spectruntiom (X, Y') is anf2-spectrum. HencHom (X, —) satisfies
the conditions of Lemma 4.2 faR = Z, and soHom(X, —) and X A —
form a Quillen adjoint pair. Since the funcdom (X, —) is defined with the
use of the simplicial mapping space@fit comes with a natural, coherent
isomorphismHom(X, YX) = Hom(X,Y)¥ for a simplicial setk. So
Hom(X, —) and its adjointX A — form asimplicial Quillen functor pair
which proves part (3) of Theorem 5.1.

It remains to construct homomorphism spectra as in part (1) of Theorem
5.1 for a general stable model category, and prove the uniqueness part (4)
of Theorem 5.1. Readers who only work with simplicial model categories
and have no need for the uniqueness statement may safely ignore the rest of
this paper.

To compensate for the lack of simplicial mapping spaces, we work with
cosimplicial framesThe theory of ‘framings’ of model categories goes back
to Dwyer and Kan, who used the terminolofpo-)simplicial resolutions
[DK80, 4.3]; we mainly refer to Chapter 5 ofdvey’sbook [Ho99] for the
material about cosimplicial objects that we needflis a pointed simplicial
set andA a cosimplicial object o, then we denote byl A K the coend
[ML71, 1X.6]

neA
ANK = / A" ANK,,

which is an object of. Here A™ A K, denotes the coproduct of copies of
A™ indexed by the sek’,,, modulo the copy ofAi™ indexed by the basepoint
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of K,,. Note thatA A A[m]; is naturally isomorphic to the object of-
cosimplices of4; the objectd A 0A[m] is also called then-th latching
objectof A. A cosimplicial mapA — B is aReedy cofibratioiif for all
m > 0 the map

AN A[m]+ Uapoam), B AOAm]y —— B A A[m],

is a cofibration inC. Cosimplicial objects in any pointed model category
admit theReedy model structur@ which the weak equivalences are the
cosimplicial maps which are levelwise weak equivalences and the cofibra-
tions are the Reedy cofibrations. The Reedy fibrations are defined by the right
lifting property for Reedy acyclic cofibrations or equivalently with the use of
matching objectsee [H099, 5.2.5] for details on the Reedy model structure.
If Aisacosimplicial objectant is an object o, then there is a simplicial
setC(A,Y) of C-morphisms defined bg(A,Y),, = C(A",Y). Thereis an
adjunction bijection of pointed sef§A A K,Y) = S.(K,C(A,Y)). If A

is a cosimplicial object, then theuspensiownf A is the cosimplicial object

X' A defined by

(DA™ = AN (SAAm]y) .

Note thatX’ A and A A S! have different meaningsi A S! is (naturally
isomorphic to) the object of 0-cosimplices BfA. There is doop functor
{2 for cosimplicial objects which is right adjoint t&'; we do not use the
precise form of2Y here. For a cosimplicial object and an object” of C
there is an adjunction isomorphism

C(ZAY) = QC(AY).

A cosimplicial object irC is homotopically constarit each cosimplicial
structure map is a weak equivalenceCinA cosimplicial frame(compare
[H099, 5.2.7]) is a Reedy cofibrant and homotopically constant cosimplicial
object. The following lemma collects from [H099, Ch. 5] those properties
of cosimplicial frames which are relevant to our discussion.

Lemma 6.3. LetC be a pointed model category.

(a) The suspension functor for cosimplicial objects preserves Reedy cofi-
brations, Reedy acyclic cofibrations and level equivalences between
Reedy cofibrant objects.

(b) If Ais a cosimplicial frame, then so iSA.

(c) If Ais a cosimplicial frame, then the funct6f A, —) takes fibrations
(resp. acyclic fibrations) i€ to fibrations (resp. acyclic fibrations) of
simplicial sets.

(d) IfY is afibrant object o, then the functo€(—, Y') takes level equiv-
alences between Reedy cofibrant cosimplicial objects to weak equiva-
lences of simplicial sets.
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Proof. (a) For a cosimplicial mag: A — B the map inC
(XA) AN Almly Usaypoaim), (¥B) AOA[m] —— (XB) A Alm]4

is isomorphic to the pushout produg¢t] i [H099, 4.2.1] of f with the
inclusioni of S AOA[m], into SYA Alm]. . Soif f is a Reedy cofibration,
then f 4 is a cofibration inC by [Ho99, 5.7.1]; henc&’A — X' Bis a
Reedy cofibration. In cosimplicial levet, the mapY' f is given by the map
FA(STAAIm]4). If fis aReedy acyclic cofibration, them (S1 A A[m] )
is an acyclic cofibration i€ by [Ho99, 5.7.1]; hencel f is also a level
equivalence. Suspension then preserves level equivalences between Reedy
cofibrant objects by Ken Brown’s lemma [H099, 1.1.12].

(b) If Ais a cosimplicial frame, thelW'A is again Reedy cofibrant by
part (a). A simplicial face mag; : Alm — 1] — A[m] induces an acyclic
cofibration

4 (AL = AN (SYA Alm — 1]4)—— A A (SEA Almly)
— (za)"

by [H099, 5.7.2], sa¥ A is also homotopically constant.

(c) This is the pointed variant of [H099, 5.4.4 (1)].

(d) If A — Bis a Reedy acyclic cofibration, then for every cofibration
of pointed simplicial set&( — L the mapA A Laaxk BAK — BAL
is an acyclic cofibration i€ by [Ho99, 5.7.1]. By adjointness the induced
mapC(B,Y) — C(A,Y) is an acyclic fibration of simplicial sets. By Ken
Brown’s Lemma [H099, 1.1.12], the funct6f—, Y') thus takes level equiv-
alences between Reedy cofibrant objects to weak equivalences of simplicial
sets. O

The following lemma provides cosimplicial analogues of the desuspen-
sionsw™ X of Construction 6.2.

Lemma6.4. Let Y be a cosimplicial object in a stable model category

C which is Reedy fibrant and homotopically constant. Then there exists a
cosimplicial frameX and a level equivalenc& X — Y whose adjoint

X — 2Y is a Reedy fibration which has the right lifting property for the
maps* — A for any cosimplicial framed.

Proof. SinceC is stable there exists a cofibrant objec? of C such that
the suspension ak® in the homotopy category af is isomorphic to the
objectY? of 0-cosimplices. By [DK80, 4.5] or [H099, 5.2.8] there exists
a cosimplicial frameX with X? = X°. SinceX is Reedy cofibrant, the
mapd® ITd' : XOIT X° — X' is a cofibration between cofibrant objects
in C; sinceX is also homotopically constant, these maps expisss a
cylinder object [Q67, | 1.5 Def. 4] foX?. The 0-cosimplices o£ X are
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given by the quotient of the mafy 1T d', hence( X' X )° is a model for the
suspension ok ¥ in the homotopy category ¢f. Since(X X )? is cofibrant
andY? is fibrant, the isomorphism between them in the homotopy category
can be realized by a weak equivaleri€e (¥ X)? = Y inC. SinceY is
Reedy fibrant and homotopically constant, the iiap— cY? is a Reedy
acyclic fibration, whereY® denotes the constant cosimplicial object. Since
X X is Reedy cofibrant, the composite map

_ _ -0
X ——¢(2X)? 2 oy?

can be liftedtoamap: XX — Y. The lift j is a level equivalence since
4% is an equivalence i@ and both¥ X (by 6.3 (b)) and” are homotopically
constant. The adjoilX — 2Y of j might not be a Reedy fibration, but we
can arrange for this by factoring it as a Reedy acyclic cofibration— X
followed by a Reedy fibratiop : X — 2Y", and replacing by the adjoint
¢ XX — Y of the mapy; by Lemma 6.3 (a) the mapX — Y X is
a level equivalence, hence sajis

Now supposé is a cosimplicial frame ang : A — 2Y is a cosim-
plicial map with adjointj : ¥’ A — Y. We want to construct a lifting, i.e.,
a mapA — X whose composite withp : X — 2Y is g. We choose
a cylinder object for4, i.e., a factorizatiomdvA — A x I — A of
the fold map as a Reedy cofibration followed by a level equivalence. The
suspension functor preserves Reedy cofibrations and level equivalences be-
tween Reedy cofibrant objects by Lemma 6.3 (a), so the suspended sequence
YAvY A — Y(A x I) — X Avyields a cylinder object fo2 A. In par-
ticular the O-th level of2(A x I) is a cylinder object fof 2 A)? = A A S*
inC.

By [H099, 6.1.1]the suspensionmap: [A%, X0 — [AOALST XOAL
S1] in the homotopy category @f can be constructed as follows. Given a
C-morphismf? : A — X°, one chooses an extensign A — X to a
cosimplicial map between cosimplicial frames. The nfias’ : AANS!T —
X A S then represents the clagyf?] € [A° AF S X0 AL S1]. Com-
position with the 0-th level)? : X A ST — Y of the level equivalence
Y ¥ X — Yisabijection from{A° AL ST, XOAL S to[A0 AE ST YY),
SinceC is stable, the suspension map is bijective, which means that there
exists a cosimplicial mag : A — X such that the mapg® o (f A SY
andg represent the same elemenfinhA St Y0

The mapf need not be a lift of the original map but we can find a liftin
the homotopy class gfas follows. SincelAS! is cofibraptandf0 isfibrant,
there exists a homotopy; : (X (A x 1)) — Y2 from«%o (fAS1)tog°.
Evaluation at cosimplicial level zero is left adjoint to the constant functor,
so the homotopy; is adjoint to a homotopy; : Y(AxI)— cYVof
cosimplicial objects. Sinc¥ is Reedy fibrant and homotopically constant,
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the mapY — cY? is a Reedy acyclic fibration. So there exists a lifting
Hjy : ¥(A x I) — Y in the commutative square

Po(Xf)Vg
'y

YAV A

)

Y(AXT) —— ¢y?
Hy
which is a homotopy from) o (X f) to g. Taking adjoints gives a map
H, : Ax T —s QY which is a homotopy frompo f to g. SinceX —s QY
is a Reedy fibration and the front inclusian: A — A x [ is a Reedy
acyclic cofibration, we can choose a liftifgs : A x I — X in the

commutative square

A f

X

AXI‘A'\QY

Hy
The end of the homotopifs, i.e., the composite maff3 o iy : A — X,
is then a lift of the original mag : A — Y sinceH; o i) = g. O

Construction 6.5. Let C be a stable model category aida cofibrant and
fibrant object ofC. We define Reedy fibrant cosimplicial frame8X as
follows. As in [H099, 5.2.8] we can choose a cosimplicial fran¥eX with
(w’X)? = X and a Reedy acyclic fibratigpy : WX — c¢X which is the
identity in dimension zero. Then®X is Reedy fibrant sincé is fibrant
in C. By Lemma 6.4 we can inductively choose cosimplicial fram&x
and level equivalenceg, : X (w"X) — w" !X whose adjointsp,, :
w'X — 2 (W™ 1X) are Reedy fibrations with the right lifting property
for cosimplicial frames. By Lemma 6.3 (a}, preserves Reedy acyclic
cofibrations, sd? preserves Reedy fibrations. Hen@éw” ' X) and thus
w™ X are Reedy fibrant. We then define the fundiom(X, —) : C — Sp
by setting

Hom(X,Y), = C(w"X,Y).
The spectrum structure maps are adjoint to the map

C(pn)Y)

C(w"1X,Y) C(X(w"X),Y)22C(w"X,Y) -

The left adjointX A — : Sp — C of Hom(X, —) is defined by the same
coequalizer diagran) as in Construction 6.2, except that an expression
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like "X A A, now refers to the coend of a cosimplicial object with a
simplicial set. Also the isomorphism betwe&hA S and X is obtained by
the same representability argument as in 6.2.

Sincew™ X is a cosimplicial frame, the functal{w” X, —) takes fibra-
tions (resp. acyclic fibrations) i@ to fibrations (resp. acyclic fibrations) of
simplicial sets by Lemma 6.3 (c). So the functdom (X, —) takes fibra-
tions (resp. acyclic fibrations) i@ to level fibrations (resp. level acyclic
fibrations) of spectra. Singg, is a level equivalence between cosimplicial
frames, Lemma 6.3 (d) shows that the nédpp,,, Y) is a weak equivalence
for fibrantY’; thus the spectruriiom (X, Y) is anf2-spectrum for fibrant
Y. SoHom(X, —) and its adjoint form a Quillen pair by Lemma 4.2 for
R = 7. This proves part (1) of Theorem 5.1.

Proof of Theorem 5.1 (4het H : Sp — C be any left Quillen functor with

an isomorphisnH (S) = X, and letG : C — Sp be a right adjoint. We
construct natural transformatiods: Hom(X,—) — G and® : H —

(X AN —) whereHom(X, —) and X A — are the Quillen pair which were
constructed in 6.5. Furthermoré,will be a stable equivalence of spectra
for fibrant objects ol and® will be a weak equivalence i@ for every
cofibrant spectrum. So any two Quillen pairs as in Theorem 5.1 (1) can be
related in this way through the pdifom (X, —) and X A —.

We denote byF,, A the cosimplicial spectrum given b{F, A)™ =
F,Alm]+ and we denote byZ* the functor between cosimplicial objects
obtained by applying the left Quillen functéf levelwise. The functof®
is then a left Quillen functor with respect to the Reedy model structures on
cosimplicial spectra and cosimplicial objectsfWe inductively choose
compatible map#,, : H*(F,A) — w"X of cosimplicial objects as fol-
lows. SinceF), A is a cosimplicial framef*(F,,A) is a cosimplicial frame
in C. The mapyy : w’X — cX is a Reedy acyclic fibration, so the
composite map

H*(FyA) —— cH(FyS®) —— ¢X

admits a liftyyy : H*(FpA) — w°X which is a level equivalence between
cosimplicial frames. The map,, : w"X — 2 (w" 1X) has the right
lifting property for cosimplicial frames, so we can inductively choose a lift
Yy H*(F,A) — w"X of the composite map

Q(T/)n—l)

H*(FyA) —— Q H*(Fy_1A) QW 1X).

We show by induction that,, is a level equivalence. The map A S! is a
weak equivalence i@ since the other three maps in the commutative square
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o P AST
H(F,S') = H*(F,A)AS' —— X A S!
Pn

H(F, 5% = H*(F,_1A)° " (W 1x)°
n—1
are. The map),, A S is a model for the suspension 6f,,)°. SinceC
is stable and+,,)" is a map between cofibrant objects;,)" is a weak
equivalence irC. Since H*(F,A) andw™X are homotopically constant,
the mapy,, : H*(F,A) — w" X is a level equivalence.

The adjunction provides a natural isomorphism of simplicial 6&%),,
= C(H*(F,A),Y) for everyn > 0, and we get a natural transformation
, Hom(X,Y)n =C(w"X,Y) —Y) (B (F,A),Y) 2G(Y), .
By the way the maps),, were chosen, the maps, together constitute a
map of spectr@y : Hom(X,Y) — G(Y), natural in theC-objectY". For
fibrant objectsy’, ¥y is a level equivalence, hence a stable equivalence, of
spectra by Lemma 6.3 (d) sings, is a level equivalence between cosim-
plicial frames.

Now let A be a spectrum. If we compose the adjaffifHom (X, X A
A)) — X AN Aofthe map¥xpa : Hom(X, X AN A) — G(X ANA)
with H(A) — H(Hom(X, X A A)) coming from the adjunction unit, we
obtain a natural transformatichy : H(A) — X A A between the left
Quillen functors. The transformatiof induces a natural transformation
L& : LH — X N — between the total left derived functors. For anyn
Ho(C) the map(L®4)* : [X AL A, Y]H©) — [LH(A),Y]H©) is iso-
morphic to the bijection (R%y). : [A,RHom(X,Y)H™®
[A, RG(Y)]H°(P), HenceL® 4 is an isomorphism in the homotopy cate-
gory of C and so the mag 4 is a weak equivalence i for every cofibrant
spectrumA. a
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